Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
نویسندگان
چکیده
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
منابع مشابه
IL-17 and IL-4 Producing CD8+ T Cells in Tumor Draining Lymph Nodes of Breast Cancer Patients: Positive Association with Tumor Progression
Background: CD8+ cytotoxic T lymphocytes have been recently divided based on their cytokine expression profile. Objective: To evaluate the percentages of CD8+ lymphocytes and their effector subsets including Tc1, Tc2 and Tc17 in the tumor draining lymph nodes (TDLNs) of patients with breast cancer. Methods: Single cell suspensions were obtained from TDLNs of 42 patients with breast cancer. Stai...
متن کاملFoxO1 controls effector-to-memory transition and maintenance of functional CD8 T cell memory.
During a T cell response, naive CD8 T cells differentiate into effector cells. Subsequently, a subset of effector cells termed memory precursor effector cells further differentiates into functionally mature memory CD8 T cells. The transcriptional network underlying this carefully scripted process is not well understood. In this study, we report that the transcription factor FoxO1 plays an integ...
متن کاملDifferentiation of CD8 memory T cells depends on Foxo1
The forkhead O transcription factors (FOXO) integrate a range of extracellular signals, including growth factor signaling, inflammation, oxidative stress, and nutrient availability, to substantially alter the program of gene expression and modulate cell survival, cell cycle progression, and many yet to be unraveled cell type-specific responses. Naive antigen-specific CD8(+) T cells undergo a ra...
متن کاملInduction of cytotoxic granules in human memory CD8+ T cell subsets requires cell cycle progression.
Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granule...
متن کاملFOXO1 opposition of CD8+ T cell effector programming confers early memory properties and phenotypic diversity.
The factors and steps controlling postinfection CD8+ T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8+ T cells. We determined the early pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015